
Measurement of Improved Performance for

Incompressible Navier-Stokes with Particles Example

P. Colella

D. F. Martin
N. D. Keen

Applied Numerical Algorithms Group
NERSC Division

Lawrence Berkeley National Laboratory

Berkeley, CA

February 8, 2005



In a previous report, the performance of the baseline Navier-Stokes with particles code
was documented. A description of the problem was presented including the input and
techniques used to measure wall-clock times along with serial and parallel performance
results of the baseline code on the NCCS Compaq AlphaServer machine at GSFC named
Halem. We also measured the approximate peak memory usage for the benchmark problem
in serial.

In this report, we present timing measurements that show an improvement in perfor-
mance after various code optimizations. The current code and the modified baseline code
are provided with this report and are available on the web at http://davis.lbl.gov/NASA.

The summary of the outcome of our performance improvements is as follows. We
reduced the wall clock time by factors ranging from 1.6 in serial to to 10.7 for 16 pro-
cessors (table 1). The amount of speedup monotonically improves with the number of
processors, demonstrating improved scalability. These speedups were obtained as a result
of code improvements which included the implementation of an adaptive mesh refinement
(AMR) capability to the code, replacing the uniform mesh implementation. Because the
baseline code was constrained by a serial bottleneck (an FFT solve), adding AMR reduced
the effect of this bottleneck and resulted in vastly improved scaling. Other performance
improvements were implemented, mostly involving optimizations to the way the particle
drag forces are computed. To improve scalability, the particles now use a different pro-
cessor distribution than the fluid quantities; this enables us to balance the particle loads
and fluid-solver loads independently, which greatly improved parallel performance.

Also, these are fixed-size speedups, with all of the performance improvements coming
from algorithm and code improvements, as opposed to increasing the number of proces-
sors. We were also able to reduce the memory required, ranging from a factor of 2.3 for
the serial case to a factor of 7.7 for the 16 processor case on halem.

Because of the speedups obtained here, and the fact that the performance improve-
ments increased with the problem size and number of processors, we feel that we have
met the requirements of Milestone G.

Summary of Performance Optimizations

AMR

We implemented an AMR capability in the particle code. This AMR algorithm is non-
subcycled (all cells are advanced at the same timestep, regardless of their degree of
refinement). This simplified the algorithm design, but entailed a fair amount of code
development, since there was no pre-existing non-subcycled AMR time-dependent code
in the Chombo framework. One assumption made in the current AMR implementation is
that all particles will only be on the finest refinement level. This simplifies the computation
of particle forces, and is a reasonable assumption for the types of problems we expect to
run.

1



Load Balance Algorithm

Load balancing was improved by implementing a second processor distribution for the
dataholders containing the particles. In the baseline implementation, all data holders
were distributed according to the number of points in each box, which provides reasonable
results for a fluid code. However, it was observed that this resulted in the particle-related
sections of the algorithm being badly unbalanced, especially in the parts of the algorithm
where the particle drag forces are deposited on the fluid mesh, and where the particle
motion is being computed.

By computing a second processor distribution for the particle data holders based on
the number of particles in each box, this load balancing issue was greatly improved. This
does result in some extra communication when data needs to be moved from one processor
distribution to another, but the additional costs are greatly outweighed by the savings due
to better load balancing of the particle work.

Serial Optimizations

The fortran subroutine which computes the kernel for depositing the particle drag force
onto the fluid mesh was optimized.

Algorithmic Improvements

The baseline implementation had a fairly restrictive time-step constraint due to the particle
update step. By improving the scheme used to update the particle positions and velocities,
we were able to greatly ameliorate the timestep restriction.

Figure 1 shows the particle velocities vs. time for a single particle in the vortex ring
flowfield for a ranges of particle CFL numbers for both the old and new particle update
schemes. As can be seen, the new scheme allows the use of a much larger timestep for
the same accuracy.

While this has no effect on these performance measurements (since they are 4
timesteps in all cases), when computing real solutions this improvement means that a
user can compute about 10 times fewer timesteps to get the same solution accuracy for
the particles.

Current Results after Improving Code Performance

Because halem.gsfc.nasa.gov was unavailable when the baseline performance was mea-
sured, we re-ran the baseline results on halem to provide a second point of comparison.

The following tables show the performance results of the current code and the original
baseline code. The baseline runs are with a problem domain size of 128

3, while the current
AMR runs are for a base domain size of 64

3 with one level of refinement. The refinement
ratio is two.

2



-5

-4

-3

-2

-1

0

1

2

3

4

0 0.1 0.2 0.3 0.4 0.5 0.6

z-
ve

lo
ci

ty

time

z-velocity vs. time for old update scheme

cfl=0.5
cfl=0.3
cfl=0.2
cfl=0.1

cfl=0.05

(a) old Scheme

0

0.5

1

1.5

2

2.5

3

3.5

0 0.1 0.2 0.3 0.4 0.5 0.6

z-
ve

lo
ci

ty

time

z-velocity vs. time for new update scheme

cfl=0.5
cfl=0.3
cfl=0.1

cfl=0.05

(b) new Scheme

Figure 1: Particle velocities vs. time for varying particle CFL numbers for the single
particle vortex-ring problem with initial particle position at (0.5, 0.5, 0.5). (a) old particle
update scheme, (b) new particle update scheme. (note different y−axis scales)

3



We also include the maximum memory used over the entire run and all processors. This
memory measurement is made using the system call getrusage() on the halem machine.
This system call retrieves information about resources used by the current process such
as the maximum resident set size and is an accurate measurement of the total memory
usage of the code.

Table 1 shows performance results of the baseline and current code. The table includes
a column that shows the improvement over the baseline code measurements.

The “Baseline run time” and “AMR run time” are the measured wall-clock time to
compute 4 timesteps and do not include setup overhead or writing large data sets to the
filesystem (I/O).

Num Baseline Baseline Max AMR Run Max improvement over
Procs Run time (s) Mem (MB) time (s) Mem (MB) baseline

1 1383.6 1196.2 888.2 528.7 1.6
2 1228.4 900.5 498.5 308.0 2.5
4 1273.5 657.3 271.9 181.0 4.7
8 1105.2 585.7 155.9 107.1 7.1
16 1074.1 536.2 100.0 69.6 10.7
32 75.3 63.9

Table 1: Results on Halem

Parallel Scaling Performance

To evaluate the scaling behavior of the particle code, we ran a modified version of the
benchmark problem in the previous section. Instead of a single plane of particles, we
instead ran the vortex-ring problem with a cloud of 32,768 particles arranged in a 32 ×

32 × 32 array, spanning from 15 cm to 85 cm in the x− and y− directions, and from 25
cm to 75 cm in the z−direction in the 100 cm cubic domain. The number of particles
was increased relative to the standard benchmark problem to ensure there were enough
particles to distribute over 128 processors. We ran the problem with three base grid sizes
– 32

3, 64
3, and 128

3.
The work due to the particles has two components – the part from updating the

particle states (position and velocity), and the work from projecting the particle drag
forces on to the computational mesh.

The particle update work includes interpolating the fluid velocities from the mesh to
the particles, updating the forces on the particles, and then solving the ODE’s to update
the particle positions and velocities. We expect this to scale more or less directly with the
number of particles, although the interpolation of fluid velocities to particles has some
dependence on grid size. The total amounts for this work, along with the total AMR

4



run time, are shown in Table 2, which demonstrate that this part of the update takes a
negligible amount of time, and scales quite well.

Because the particle spreading radius (ε in Section 4 in [MC03]) and the discrete delta
function radius (see Eqn 5 in [MC03]) are held fixed as we reduce the mesh spacing (these
are held fixed as the mesh spacing decreases because the particles in this problem represent
physical particles, rather than point charges), the work involved in the particle-fluid drag
force projection should also increase by a factor of 8 as the mesh spacing is halved, in the
same way as the fluid solver.

So, for these scaling tests, the number of particles is held fixed in these runs while
we decrease the mesh spacing. This is consistent with the approach taken for the AMR
Navier-Stokes code [CMK05]. As we double the linear size of the problem holding the
number of particles constant, the asymptotic computational size (both in memory and
CPU time) of the problem increases by a factor of 8 in 3 dimensions.

We compute a scaled efficiency by comparing the run time between two runs which
differ by a factor of two in base grid size and a factor of 8 in number of processors.
Run times and maximum memory usage for this problem are shown in Table 2, while the
resulting efficiencies are shown in Table 3.

Prob size Num Max Mem AMR Run Particle update
Procs (MB) (sec) (sec)

32x32x32 8 72.5 100.4 0.59
64x64x64 16 115.7 178.4 1.2
64x64x64 64 75.8 103.4 0.38

128x128x128 32 317.8 597.3 3.73
128x128x128 64 175.1 352.4 2.24
128x128x128 128 117.3 220.8 1.41

Table 2: Current parallel performance of AMRINS with particles code for vortex-ring
problem with 32,768 particles

Base Problem Num Large Problem Large num Scaled
Size Procs Size processors Efficiency

32x32x32 8 64x64x64 64 0.97
64x64x64 16 128x128x128 128 0.81

Table 3: Scaled Efficiencies computed from Table 2

5



Bibliography

[CMK05] P. Colella, D. F. Martin, and N. D. Keen. Measurement of AMRINS parallel
performance. Technical report, Applied Numerical Algorithms Group, Lawrence
Berkeley Laboratory, 2005.

[MC03] Dan Martin and Phil Colella. Incompressible Navier-Stokes with particles design
document. Technical report, Applied Numerical Algorithms Group, Lawrence
Berkeley Laboratory, 2003.

6


